Mariner Backtesting - TA-LIB Rate of change ratio 100 scale: (real/prevPrice)*100

ROCR100

Rate of change ratio 100 scale: (price/prevPrice)*100

ROCR100

 real = ROCR100(close, timeperiod=10)

Plot

Rate of change ratio 100 scale: (price/prevPrice)*100

Working Example

from cloudquant.interfaces import Strategy
from collections import OrderedDict
import ktgfunc
import talib

class WE_ROCR100(Strategy):

    def on_start(self, md, order, service, account):
        # symbol and timestamp
        print(self.symbol + ":  " + service.time_to_string(service.system_time))
        daily_bars = md.bar.daily(start=-100)
        close = daily_bars.close
        real = talib.ROCR100(close, timeperiod=10)

        # get the date values
        dates = service._context.market._storage.market_hours.keys()
        dateList = []
        for date in dates:
           dateList.append(str(date.strftime('%Y-%m-%d')))
        dates = sorted(dateList, reverse=True)[1:101]
        dates.sort()

        dict = OrderedDict()
        dict['date'] = dates
        dict['close'] = close
        dict['real'] = real
        symbol = 'ROCR100: ' + self.symbol
        print ktgfunc.talib_table(symbol, 1, dict)

Console

MSFT:  2017-02-09 09:30:00.000000
ROCR100: MSFT
Input Output
date close real
2016-09-16 56.87 nan
2016-09-19 56.55 nan
2016-09-20 56.43 nan
2016-09-21 57.37 nan
2016-09-22 57.43 nan
2016-09-23 57.04 nan
2016-09-26 56.52 nan
2016-09-27 57.56 nan
2016-09-28 57.64 nan
2016-09-29 57.01 nan
2016-09-30 57.21 100.61
2016-10-03 57.03 100.86
2016-10-04 56.86 100.76
2016-10-05 57.25 99.79
2016-10-06 57.35 99.86
2016-10-07 57.41 100.64
2016-10-10 57.65 102.00
2016-10-11 56.81 98.69
2016-10-12 56.73 98.41
2016-10-13 56.54 99.16
2016-10-14 57.03 99.69
2016-10-17 56.84 99.65
2016-10-18 57.27 100.73
2016-10-19 57.14 99.81
2016-10-20 56.87 99.15
2016-10-21 59.26 103.22
2016-10-24 60.59 105.10
2016-10-25 60.58 106.64
2016-10-26 60.22 106.16
2016-10-27 59.70 105.59
2016-10-28 59.47 104.27
2016-10-31 59.52 104.72
2016-11-01 59.40 103.71
2016-11-02 59.03 103.30
2016-11-03 58.81 103.42
2016-11-04 58.32 98.41
2016-11-07 60.01 99.05
2016-11-08 60.06 99.15
2016-11-09 59.77 99.24
2016-11-10 58.31 97.67
2016-11-11 58.62 98.58
2016-11-14 57.73 97.00
2016-11-15 58.87 99.11
2016-11-16 59.65 101.05
2016-11-17 60.64 103.11
2016-11-18 60.35 103.49
2016-11-21 60.86 101.41
2016-11-22 61.12 101.76
2016-11-23 60.40 101.06
2016-11-25 60.53 103.81
2016-11-28 60.61 103.39
2016-11-29 61.09 105.82
2016-11-30 60.26 102.36
2016-12-01 59.20 99.25
2016-12-02 59.25 97.71
2016-12-05 60.22 99.78
2016-12-06 59.95 98.50
2016-12-07 61.37 100.41
2016-12-08 61.01 101.01
2016-12-09 61.97 102.38
2016-12-12 62.17 102.57
2016-12-13 62.98 103.09
2016-12-14 62.68 104.02
2016-12-15 62.58 105.71
2016-12-16 62.30 105.15
2016-12-19 63.62 105.65
2016-12-20 63.54 105.99
2016-12-21 63.54 103.54
2016-12-22 63.55 104.16
2016-12-23 63.24 102.05
2016-12-27 63.28 101.79
2016-12-28 62.99 100.02
2016-12-29 62.90 100.35
2016-12-30 62.14 99.30
2017-01-03 62.58 100.45
2017-01-04 62.30 97.93
2017-01-05 62.30 98.05
2017-01-06 62.84 98.90
2017-01-09 62.64 98.57
2017-01-10 62.62 99.02
2017-01-11 63.19 99.86
2017-01-12 62.61 99.40
2017-01-13 62.70 99.68
2017-01-17 62.53 100.63
2017-01-18 62.50 99.87
2017-01-19 62.30 100.00
2017-01-20 62.74 100.71
2017-01-23 62.96 100.19
2017-01-24 63.52 101.40
2017-01-25 63.68 101.69
2017-01-26 64.27 101.71
2017-01-27 65.78 105.06
2017-01-30 65.13 103.88
2017-01-31 64.65 103.39
2017-02-01 63.58 101.73
2017-02-02 63.17 101.40
2017-02-03 63.68 101.50
2017-02-06 63.64 101.08
2017-02-07 63.43 99.86
2017-02-08 63.34 99.47