Mariner Backtesting - TA-LIB Vector Arithmetic Substraction

SUB

 

 real = SUB(high, low)

Plot

Vector Arithmetic Substraction

Working Example

 from cloudquant.interfaces import Strategy
from collections import OrderedDict
import ktgfunc
import talib

class WE_SUB(Strategy):

    def on_start(self, md, order, service, account):
        # symbol and timestamp
        print(self.symbol + ":  " + service.time_to_string(service.system_time))
        daily_bars = md.bar.daily(start=-100)
        high = daily_bars.high
        low = daily_bars.low
        real = talib.SUB(high, low)

        # get the date values
        dates = service._context.market._storage.market_hours.keys()
        dateList = []
        for date in dates:
           dateList.append(str(date.strftime('%Y-%m-%d')))
        dates = sorted(dateList, reverse=True)[1:101]
        dates.sort()

        dict = OrderedDict()
        dict['date'] = dates
        dict['high'] = high
        dict['low'] = low
        dict['real'] = real
        symbol = 'SUB: ' + self.symbol
        print ktgfunc.talib_table(symbol, 1, dict)

Console

MSFT:  2017-02-09 09:30:00.000000
SUB: MSFT
Input Output
date high low real
2016-09-16 57.24 56.37 0.87
2016-09-19 57.36 56.47 0.89
2016-09-20 56.97 56.37 0.60
2016-09-21 57.46 56.70 0.76
2016-09-22 57.61 57.24 0.37
2016-09-23 57.52 56.99 0.53
2016-09-26 56.76 56.45 0.31
2016-09-27 57.67 56.30 1.37
2016-09-28 57.67 57.28 0.39
2016-09-29 57.78 56.83 0.95
2016-09-30 57.38 56.96 0.43
2016-10-03 57.16 56.68 0.49
2016-10-04 57.21 56.59 0.62
2016-10-05 57.57 56.88 0.70
2016-10-06 57.47 56.90 0.58
2016-10-07 57.59 57.03 0.56
2016-10-10 58.00 57.48 0.52
2016-10-11 57.63 56.51 1.12
2016-10-12 56.89 56.02 0.86
2016-10-13 56.92 55.94 0.98
2016-10-14 57.35 56.74 0.62
2016-10-17 57.07 56.49 0.59
2016-10-18 57.56 57.02 0.53
2016-10-19 57.45 57.01 0.44
2016-10-20 57.13 56.28 0.85
2016-10-21 60.04 59.09 0.96
2016-10-24 60.59 59.53 1.06
2016-10-25 60.96 60.39 0.57
2016-10-26 60.79 60.06 0.73
2016-10-27 60.42 59.69 0.74
2016-10-28 60.11 59.18 0.93
2016-10-31 60.01 59.52 0.50
2016-11-01 59.62 58.85 0.76
2016-11-02 59.53 58.90 0.63
2016-11-03 59.24 58.71 0.53
2016-11-04 58.88 58.13 0.75
2016-11-07 60.11 59.38 0.74
2016-11-08 60.37 59.75 0.63
2016-11-09 60.18 58.80 1.38
2016-11-10 60.08 57.24 2.84
2016-11-11 58.72 57.62 1.10
2016-11-14 58.68 56.90 1.79
2016-11-15 59.49 58.31 1.18
2016-11-16 59.66 54.27 5.39
2016-11-17 60.95 59.97 0.99
2016-11-18 61.14 60.30 0.84
2016-11-21 60.97 60.42 0.55
2016-11-22 61.26 60.81 0.45
2016-11-23 61.10 60.25 0.85
2016-11-25 60.53 60.13 0.40
2016-11-28 61.02 60.21 0.81
2016-11-29 61.41 60.52 0.89
2016-11-30 61.18 60.22 0.97
2016-12-01 60.15 58.94 1.22
2016-12-02 59.47 58.80 0.67
2016-12-05 60.58 59.56 1.02
2016-12-06 60.46 59.80 0.66
2016-12-07 61.38 59.80 1.58
2016-12-08 61.58 60.84 0.74
2016-12-09 61.99 61.12 0.87
2016-12-12 62.30 61.72 0.58
2016-12-13 63.42 62.24 1.18
2016-12-14 63.45 62.53 0.92
2016-12-15 63.15 62.30 0.85
2016-12-16 62.95 62.12 0.83
2016-12-19 63.77 62.42 1.35
2016-12-20 63.80 63.03 0.77
2016-12-21 63.70 63.12 0.58
2016-12-22 64.10 63.40 0.69
2016-12-23 63.54 62.80 0.74
2016-12-27 64.07 63.21 0.86
2016-12-28 63.40 62.83 0.57
2016-12-29 63.20 62.73 0.47
2016-12-30 62.99 62.03 0.96
2017-01-03 62.84 62.12 0.72
2017-01-04 62.75 62.12 0.63
2017-01-05 62.66 62.03 0.63
2017-01-06 63.15 62.04 1.11
2017-01-09 63.08 62.54 0.54
2017-01-10 63.07 62.28 0.79
2017-01-11 63.23 62.43 0.80
2017-01-12 63.40 61.95 1.45
2017-01-13 62.87 62.35 0.52
2017-01-17 62.70 62.03 0.67
2017-01-18 62.70 62.12 0.58
2017-01-19 62.98 62.19 0.78
2017-01-20 62.82 62.37 0.45
2017-01-23 63.12 62.57 0.55
2017-01-24 63.74 62.94 0.80
2017-01-25 64.10 63.45 0.65
2017-01-26 64.54 63.55 0.99
2017-01-27 65.91 64.89 1.02
2017-01-30 65.79 64.80 0.99
2017-01-31 65.15 64.26 0.89
2017-02-01 64.62 63.47 1.15
2017-02-02 63.41 62.75 0.66
2017-02-03 63.70 63.07 0.63
2017-02-06 63.65 63.14 0.51
2017-02-07 63.78 63.23 0.55
2017-02-08 63.81 63.22 0.59